


- 1. The error and four more sensor characteristics were discussed in the lecture on in-
  - (a) Name the four other sensor characteristics.

ternal sensors.

- (b) Which three types of measurement errors were discussed in the lecture?
- 2. Draw the schematic output of a quadrature encoder with channels A and B for two different directions of rotation onto the dashed line-pattern on the answer sheet.
- 3. Explain the advantage of Gray code over binary code for absolute encoder discs.
- 4. Name one advantage and one disadvantage each for accelerometers and gyroscopes with respect to spatial orientation estimation.
- 5. Name two filter algorithms for fusing accelerometer and gyroscope readings for orientation estimation.
- 6. Given the voltage divider in Figure 1 and the values  $R_1 = 10\Omega$ ,  $U_1 = 2V$ ,  $U_2 = 4V$ , give the formula for  $R_2$  and compute it explicitly.

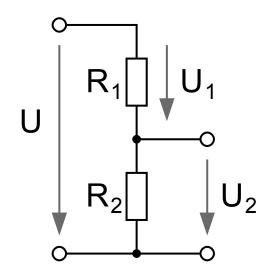



Figure 1: The voltage divider scheme

2 P. 1 P. 2 P.

| - • • |
|-------|
|-------|

2 P.

| 1        | D  |
|----------|----|
| <b>T</b> | г. |



- 1. What is the advantage of proximity sensors over other external sensors?
- 2. Explain the working principle of a capacitive proximity sensor. Answer the following questions:
  - What is the underlying physical phenomena?
  - How does the sensor interact with the distant object?
  - What is measured?
  - How is it measured?
- 3. How is the depth information computed in a stereo vision system?
- 4. Label the principal drawing of a stereo vision system on the answer sheet. Use the following symbols: focal length f, baseline b, depth Z, point P and the projected positions of the image planes  $x_L$  and  $x_R$ .
- 5. How is the disparity d calculated?
- 6. Give the equation for the calculation of Z based on f, b and d.
- 7. Calculate the depth Z of P for the following values: f = 1 cm, b = 5 cm,  $x_L = 7$  mm,  $x_R = 8$  mm.
- 8. Active depth cameras use structured light to measure the depth information directly. Explain the working principle of spacial codification.

## **Exercise 3** Active Vision and Gaze Stabilization (8 Points)

- 1. What is Active Vision? What are the advantages over static vision?
- 2. List three gaze stabilization methods for robotic application. What are their sensory cues? Discuss briefly their advantages and limitations.
- 3. What is the control output of the vestibulo-ocular reflex (VOR) given the head rotational velocity  $\omega_{head} = \begin{bmatrix} \omega_{yaw} & \omega_{pitch} \end{bmatrix}^T$  measured by an Inertial Measurement Unit (IMU).

2

| 1 | Ρ. |  |
|---|----|--|
| 2 | P  |  |

1 P.

2 P.

1 P.

1 P.

1 P.

1 P.

(10 Points)

2 P.

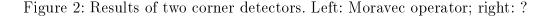
4 P.

| 2 | Ρ. |
|---|----|

## Exercise 4 SLAM.

1. A mobile robot with pose  $\mathbf{x}_t = (x_{R,t}, y_{R,t})^T$  should be localized on a 2D map with three landmarks  $\mathbf{m}_1 = (1, 11)^T$ ,  $\mathbf{m}_2 = (2, 12)^T$ ,  $\mathbf{m}_3 = (3, 13)^T$ . The following measurement model is used for the Kalman filter:

$$\mathbf{z}_t = h(\mathbf{x}_t) = \left(e^{-\|\mathbf{m}_1 - \mathbf{x}_t\|^2}, e^{-\|\mathbf{m}_2 - \mathbf{x}_t\|^2}, e^{-\|\mathbf{m}_3 - \mathbf{x}_t\|^2}\right)^T,$$

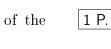

- (a) Calculate the Jacobian  $H_t = h'(\mathbf{x}_t)$  for the measurement update of the Kalman filter.
- (b) Evaluate the Jacobian  $H_t$  at the robot pose  $\mathbf{x}_t = (5,7)^T$ .

Hint: You do not have to evaluate the exponential function by hand. The solution can be given in the form  $c \cdot e^k$  with values k, c.

- 2. Name and explain the four main differences between EKF SLAM and GraphSLAM.
- 3. FastSLAM uses a Rao-Blackwellized particle filter (RBPF).
  - (a) What is the difference between a RBPF and a traditional particle filter?
  - (b) What information does FastSLAM store in a single particle?

## Feature Extraction Exercise 5

The two images in Figure 2 show results of two corner detection operators. The left image shows features detected by the Moravec Operator.




- 1. Explain why the Moravec Operator's falsely finds corners along one edge of the triangle?
- 2. Which operator provides the result shown in the right image?
- 3. We introduced in the lecture the *image structure tensor* M(u, v). What is the dimension of M? Which parameters of M encode the information about the distribution of gradients image for the detection of flat, edge and corner regions? Explain the 1 . 1 . 1 1 4 4 1 6

3

C

I



| 1 | Ρ. |
|---|----|
| 2 | Ρ. |





2 P.

1 P.

1 P.



(10 Points)